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Chapter 1

Introduction

The analog and digital filter design method depends on the type of filter to be designed. Roughly
speaking filters fall in two groups: Frequency Selective Filters with approximately piecewise con-
stant frequency weighting and Frequency Weighting Filters where the frequency weighting is some
desired curve.
The Frequency Selective Filters are often designed using approximating functions, whereas Fre-
quency Weighting Filters are designed using iterative methods. Frequency Selective filter are also
sometimes designed using iterative methods for example if a certain phase or group delay is de-
sired.
Since Frequency Selective Filters have an approximately piecewise constant frequency weighting
they can be designed as analog filters and then transformed to digital filters using the bilinear
transform. This is normally not possible for Frequency Weighting Filters since the bilinear trans-
form distorts the frequency axis and thereby the desired frequency response.
When transforming an analog filter to a digital filter using the bilinear transform the result is
a so called IIR filter(infinite impulse response). Another type of digital filter is the FIR filter
(finite impulse response).These filters are usually designed using time domain weighting or itera-
tive methods (e.g. the Remez method). FIR filter design is not covered by this paper. Iterative
methods are also excluded from this paper.
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Chapter 2

Frequency Selective Filters

The most common filters of this type are: Low Pass filters, High Pass Filters, Band Pass Filters
an Band Stop Filters, where only the magnitude response is specified. These analog filters can be
designed using appoximating functions. A prototype LP filter is designed first and it is then con-
verted to the desired type. If a digital filter is to be designed, the analog filter can be transformed
to a digital filter using the bilinear transform. It is important to remember that the bilinear
transform also in this case distorts the frequency axis, but since the desired frequency response is
piecewise constant, this can be handled by adjusting the cut-off frequencies of the analog filter.

2.1 Filter specification

A normalized ideal low pass filter has a magnitude frequency response as shown in Figure 2.1.

1
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ω

|T (jω)|2

Figure 2.1: Ideal frequency response of low-pass filter

This ideal response cannot be achieved in practice and it is therefore necessary to change the
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Figure 2.2: Modified frequency response of low-pass filter

specification to an approximate one as shown in Figure 2.2.
If the magnitude of the frequency response is written:

|T (jω)|2 =
1

1 + |K(jω)|2

then the filter specification can be given by the magnitude of K as shown in Figure 2.3.
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Figure 2.3: Modified frequency response of K

It is seen that |K(jω)|2 must approximate zero in the passband and infinity in the stop band. If
therefore the zeros and poles are placed on the imaginary axis, K(ω) can be written:

K(ω) = ωk
∏
i

(ω2 − ω2
i )
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or

K(ω) = ωk
∏
i(ω

2 − ω2
i )∏

j(ω2 − ω2
j )

If the zeroes are placed in the passband and the poles in the stop band, then the specification can
be met.
The following expressions are used in the next sections:

k =
fp
fs

where fp is the passband cut-off frequency and fs is the stop band frequency.

k1 =
10

ap
10 − 1

10
as
10 − 1

where ap is the maximum damping in the passband and as is the minimum damping in the stop
band:

K(ω) = εFn(ω)

2.2 Butterworth filters

2.2.1 Filter poles

The Butterworth filter is obtained if Fn(0) = 0 and the first n − 1 derivatives of Fn are zero,
giving:

Fn(ω) = ωn

and

|Tn(jω)|2 =
1

1 + ω2n

ε is omitted since it only scales the frequency axis.
Note that |Tn(jω)|2 = 1

2
for ω = 1 independent of n.

We now have:

Tn(s)Tn(−s) =
1

1 + (−s2)n

and the poles are found by solving:
(−s2)n + 1 = 0

or
s2n = (−1)n+1

The poles are now given by:

sk = ej
v+2kπ

2n , k ∈ {0, 1, 2, ..., 2n− 1}

where v = 0 for n odd and v = π for n even.
The poles in the left half plane of Tn(s) are given by:

sk = − sin(
2k + 1

2n
π) + j cos(

2k + 1

2n
π), k ∈ {0, 1, 2, ..., n− 1}
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The denominator polynomials of Tn(s) for n = 1, 2, 3 are:

s+ 1

s2 +
√

2s+ 1

s3 + 2s2 + 2s+ 1

2.2.2 Filter order

If the damping in the passband is ap and the damping in the stop band as then:

ap = 10 log(1 + (
fp
f0

)2n)

as = 10 log(1 + (
fs
f0

)2n)

giving

(
fp
fs

)2n = k1

and

n =
1

2

log k1
log k

n is rounded up and a lower and upper bound of f0 is found from the formulas for ap and as.
Since ω0 = 1 for the poles given above, the poles must be scaled by 2πf0 in order to give the
desired fp and fs.

2.3 Chebyshev filters

2.3.1 Filter poles

For the Butterworth filter the error in the passband increase with frequency. The maximum error
can be reduced by letting the error oscillate through the passband. This is obtained by letting
the polynomial F above be a Chebyshev polynomial:

Fn(ω) = Cn(ω) = cos(n arccos(ω))

or
Cn(ω) = cos(nu), ω = cos(u)

To see this is a polynomial, cos(nu) is expanded:

Cn(ω) = cos(nu) = cosn(u)− (n2 ) cosn−2(u) sin2(u) + (n4 ) cosn−4(u) sin4(u) + ...

Since cos2(u) + sin2(u) = 1, sin2(u) = 1− ω2 and:

Cn(ω) = ωn − (n2 )ωn−2(1− ω2) + (n4 )ωn−4(1− ω2)2 + ...
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The Chebyshev polynomials all oscillates between ±1 in the interval -1 to 1. They can be found
using the recursion:

Cn+1(ω) = 2Cn(ω)ω − Cn−1(ω), C0(ω) = 1

The first three polynomials are:
1

ω

2ω2 − 1

The zeros are given by:

ω = cos(
2k + 1

2n
π), k ∈ {0, 1, 2, ..., n− 1}

We now have:

|Tn(jω)|2 =
1

1 + ε2C2
n(ω)

Note that |Tn(jω)|2 = 1
1+ε2

for ω = 1 independent of n.
And

Tn(s)Tn(−s) =
1

1 + ε2C2
n( s

j
)

The poles in the left half plane of Tn(s) are given by:

sk = − sinh(u) sin(
2k + 1

2n
π) + j cosh(u) cos(

2k + 1

2n
π), k ∈ {0, 1, 2, ..., n− 1}

where

u =
1

n
sinh−1(

1

ε
)

T (s) is given by:

T (s) =
G0∏

k (s− sk)
where

G0 =
∏
k

|sk|, nodd

G0 =
1

1 + ε2
∏
k

|sk|, neven

2.3.2 Filter order

If the damping in the passband is ap and the damping in the stop band as then:

ap = 10 log(1 + ε2)

as = 10 log(1 + ε2C2
n(
fs
fp

))

ε2 = 10
ap
10 − 1
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ε2C2
n(
fs
fp

) = 10
as
10 − 1

C2
n(
fs
fp

) =
10

as
10 − 1

ε2

Cn(
1

k
) =

1√
k1

k and k1 are given in the previous section.
Using the Chebyshev approximation:

Cn(ω) ≈ (ω +
√
ω2 − 1)n

2

we have:

n =
log(2

√
k−1
1 )

log(k−1 +
√
k−2 − 1)

n is rounded up and ε is given by the formula for ap.
Since ωp = 1 for the poles given above, the poles must be scaled by 2πfp in order to give the
desired fp and fs.

2.4 Inverse Chebyshev filters

2.4.1 Filter zeros and poles

The Chebyshev filter has ripple in the passband and decays monotonically in the stop band. If
a ripple free passband is required and ripple in the stop band is acceptable, then the following
polynomial can be used:

Fn(ω) =
1

Cn( 1
ω

)

We then have:

|Tn(jω)|2 =
ε2C2

n( 1
ω

)

1 + ε2C2
n( 1

ω
)

Note that |Tn(jω)|2 = ε2

1+ε2
for ω = 1 independent of n.

And

Tn(s)Tn(−s) =
ε2C2

n( j
s
)

1 + ε2C2
n( j

s
)

The zeros of Tn(s) are all on the imaginary axis and determined by the reciprocals of the zeros of
the Chebyshev polynomial:

sk = j
1

cos(2k+1
2n

π)
, k ∈ {0, 1, 2, ..., n− 1}

In case the order is odd, the zero of the Chebyshev polynomial at ω = 0 is discarded and the
number of zeros is n− 1.
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The poles in the left half plane are the reciprocal of the poles of the Chebyshev filter given in the
previous section:

sk =
1

− sinh(u) sin(2k+1
2n

π) + j cosh(u) cos(2k+1
2n

π)
, k ∈ {0, 1, 2, ..., n− 1}

where

u =
1

n
sinh−1(

1

ε
)

T (s) is given by:

T (s) = G0

∏
k (s− szk)∏
k (s− spk)

where

G0 =

∏
k |spk|∏
k |szk|

2.4.2 Filter order

If the damping in the stop band is as then:

as = −10 log(
ε2

1 + ε2
)

and

n =
log(2

√
k−1
1 )

log(k−1 +
√
k−2 − 1)

n is rounded up and ε is given by the formula for as.
Since ωs = 1 for the poles and zeros given above, the poles and zeros must be scaled by 2πfs in
order to give the desired fp and fs.
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Chapter 3

Low pass to High pass transform

The following mapping:

ωLP =
1

ωHP

can be used to transform a HP filter specification into a LP filter specification. Thereafter the LP
filter poles and zeros can be transformed to a HP filter using:

sHP =
1

sLP

If the LP filter has n poles and m zeros, then high pass filter transfer function must be multiplied
by sn−m.
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Chapter 4

Low pass to Band pass transform

The following mapping:

ωLP =
ωBP
ωc
− ωc
ωBP

, ω2
c = ωl ∗ ωu

where ωl and ωu are the two band edges of the passband or the stop band, can be used to transform
a BP filter specification into a LP filter specification. Thereafter the LP filter poles and zeros can
be transformed to a BP filter using:

sBP =
ωc
2

(−sLP ±
√
s2LP + 4)

If the LP filter has n poles and m zeros, then high pass filter transfer function must be multiplied
by sn−m.
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Chapter 5

The Bilinear transform

As mentioned above the Bilinear transform can be used for designing a digital filter knowing a
corresponding analog filter. But since the frequency axis is distorted the specification of the digital
filter must first be converted to the analog filter specification using:

F =
fs
π

tan(π
f

fs
)

where F is the frequency used when designing the analog filter,f is the desired frequency and fs
is the sampling frequency.

Example

A bandpass filter is to be realized as a digital filter where:

fs = 48000Hz

fpl = 10000Hz

fpu = 14000Hz

fsu = 16000Hz

f 2
c =

√
fp1fp2

fsl =
f 2
c

fsu
= 8750Hz

The specification of the analog BP filter is then:

Fpl = 11724Hz

Fpu = 19912Hz

Fsu = 26464Hz

Fsl = 9851Hz

Fpc = 15279Hz
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Fsc = 16146Hz

It is seen that the center frequency is different for the passband and stop band. This is not allowed
using the mapping between BP and LP filter described above.
Assuming the center frequency is to be determined by the passband, then using Fsu = 26464Hz
will give a Fsl outside the specified band and it is therefore necessary to calculate Fsu from Fsl,
leading to Fsu = 23698Hz.
The band pass specification is now transformed to a low pass filter specification and the procedure
described above is used to find the poles and zeros of the analog bandpass filter. The final step is
to transform poles and zeros to digital form using:

z =
1 + s

2fs

1− s
2fs

Note that fplfpu 6= fslfsu for the final digital filter and that fsu is lower than required.
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Program example

A programming example written in C# can be found here:

https://github.com/Grubleren/FilterDesign
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