
Introduction to Galois theory

by

Jens Hee
https://jenshee.dk

December 2021



Change log

10. December 2021

1. Document started.

i



Contents

1 Introduction 2
1.1 Algebraic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Polynomials and Extension fields 4
2.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Extension fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Galois Theory 6
3.1 Splitting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Galois extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 The Galois main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Solving by radicals 10

5 Appendix A 11
5.1 Number of automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Separable polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Abstract fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Uniqueness of irreducible polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Minimal polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



Chapter 1

Introduction

The Galois theory is named after the french mathematician Évariste Galois (1811- 1832). He died
in a duel at the age of 20 and finalized his work the night before. He was in particular interested
in the study of polynomials with rational coefficients and their factorization. The theory provides
a connection between field theory and group theory and can be used to explain when the roots of
a polynomial with rational coefficients can be expressed by radicals, i.e. when the solution can be
expressed by a formula involving only rational numbers, n’th roots, and the four basic arithmetic
operations. In fact polynomials of degree more than four cannot be solved by radicals. Moreover
the theory can be used to explain why the classical problems trisecting the angle, squaring the
circle and doubling the cube are impossible to solve. The theory about finite fields are also named
after him. This theory is not covered by this paper.
A central part of Galois theory is the relation between the so called extension fields and groups.
Fields are defined as sets where addition, subtraction, multiplication and division are defined. The
set of rational numbers, real numbers and complex numbers are all examples of fields. The roots
of polynomials with rational coefficients form a field called algebraic numbers.
Groups are defined as sets with a binary operation that is associative. A group has an identity
element and every element has an inverse. In Galois theory an element of a group is a mapping
of a field extensions to itself.
This paper does not cover all the details of Galois theory, but will hopefully give an introduction
making it easier to dig deeper into the subject.
Throughout this paper it is assumed that polynomials have rational coefficients, but the theory
also cover the case where the polynomials have coefficients in other fields.

1.1 Algebraic numbers

A number α is called algebraic if it is the root of a polynomial p(x) with rational coefficients.
As mentioned above algebraic is not restricted to the case where the polynomials have rational
coefficients, but often it is implied.
Examples are:

α =
√
2 p(x) = x2 − 2

α =
3
√
1 +

√
7 p(x) = (x3 − 1)2 − 7

α = cos(2π
7
) p(x) = 8x3 + 4x2 − 4x− 1
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To see that cos(2π
7
) is in fact a root of 8x3 + 4x2 − 4x− 1 we have:

cos 2π
7

= ξ+ξ
′

2
= α, ξ = e

2πi
7

cos2 2π
7

= ( ξ+ξ
′

2
)2 = ξ2+ξ

′2+2
4

= α2

cos3 2π
7

= ( ξ+ξ
′

2
)3 = ξ3+ξ

′3+3(ξ+ξ
′
)

8
= α3

or
ξ + ξ

′
= 2α

ξ2 + ξ
′2 = 4α2 − 2

ξ3 + ξ
′3 = 8α3 − 6α

since
1 + ξ + ξ2 + ξ3 + ξ4 + ξ5 + ξ6 = 0

ξ−3 + ξ−2 + ξ−1 + 1 + ξ1 + ξ2 + ξ3 = 0

8α3 − 6α + 4α2 − 2 + 2α + 1 = 0

8α3 + 4α2 − 4α− 1 = 0

Substituting α = x+ β the square part can be eliminated and we get:

x3 − 7

12
x− 7

216
= 0

and we have the solution:

cos(
2π

7
) = −1

6
+

1

6
3

√
7

2

(
3

√
1 + i3

√
3 +

3

√
1− i3

√
3

)
Note that although cos(2π

7
) is real it cannot be written using radicals without complex notation.

This is called casus irreducibilis.
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Chapter 2

Polynomials and Extension fields

2.1 Polynomials

A polynomial of degree n has n roots in the field C, but they need not be distinct. The set of all
polynomials with coefficients in the field K are given by K[x]. When dealing with polynomials in
K[x], the roots are not restricted to be in K although the coefficients are. A polynomial of degree
n may be irreducible over say K, but is still regarded as having n roots over some extension field.
An irreducible polynomial over K cannot be factored into polynomials with coefficients i K. The
polynomial x4+4x3−x2−8x−2 is not irreducible since it can be factored as (x2+4x+1)(x2−2)
whereas the polynomial x2+4x+1 is irreducible since it has no rational roots, it has on the other
hand the real roots −2+

√
3 and −2−

√
3. If two irreducible polynomials have a root in common

they have all roots in common.

2.2 Fields

A field is a set where addition, subtraction, multiplication and division are defined. They are
denoted by capital letters e.g. K, L and M . The following letters have a special meaning: Q
rational numbers, R real numbers, C complex numbers, all being fields.

2.3 Extension fields

A field L is an extension field of the field K, if K ⊂ L. If a field is extended by an element say√
2 ∈ R then the extension L/K becomes:

{x|x = a+ b
√
2, a, b ∈ K}

The field extension is said to have degree 2. If on the other hand the field is extended by 3
√
2 it

becomes:
{x|x = a+ b

3
√
2 + c

3
√
2
2
, a, b, c ∈ K}

and the degree of the extension is said to be 3.
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Definition 2.1 The field extension L/K is said to be finite with degree n, if L can be seen as
a vector space over K with degree n. In order to emphasize that the field L is an extension field
over K it is written L/K. The degree of the extension field L/K is written [L : K].

In the first example above the degree of the extension field is 2 since a and b can be viewed
as the coordinates of a two dimensional vector space having {1,

√
2} as the basis. In the second

example example above the extension field viewed as a vector has the basis {1, 3
√
2, 3
√
2
2
, }. It is

thus clear that the degree of the extension field depends on the element added.

Definition 2.2 If a polynomial p(x) ∈ K[x], has a root α, then α is said to be algebraic over
K. See also the section ”Algebraic numbers” for examples.

Theorem 2.1 α is algebraic over K if and only if it is an element of a finite extension field L/K
of degree n.

Proof 2.1a Let α be a root of the irreducible polynomial p(x) of degree n. The ring of polyno-
mials K[x] modulo p(x) form a field of degree n, see Appendix A, α is an element of this field by
letting x → α.

Proof 2.1b If an extension field L/K has degree n and it has the element α then L/K can be
seen as a vector space over K with dimension n. A non trivial linear combination of n elements
of L is thus not zero:

anα
n + an−1α

n−1 + +a1α = −a0 a0 ̸= 0

showing that an element α ∈ L is a root of a polynomial of degree n with coefficients in K.

Theorem 2.2 If α and β are algebraic over K then so are α + β, α− β, α ∗ β and α/β.

Theorem 2.3 A polynomial with algebraic coefficients has algebraic roots.
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Chapter 3

Galois Theory

3.1 Splitting fields

In order to study the roots of a polynomial a field is extended by all the roots of the polynomial.
Such an extension field is called a splitting field if it is the minimal field containing the roots. It is
separable meaning it has no multiple roots (this is always the case for polynomials with rational
coefficients). A splitting field is also normal meaning it contains all the roots of the polynomial.
The degree of the splitting field M/K is n ≤ [M : K] ≤ n! where n is the degree of the polynomial,
n always divides [M : K].

3.1.1 Examples

Example 1 The polynomial x2−2 has the roots ±
√
2. Adjoining

√
2 to Q gives a splitting field

of degree 2:
{x|x = a+ b

√
2, a, b ∈ Q}

Note that the field automatically contains the other root −
√
2. It shows that the symmetry of

the roots affect the splitting field.

Example 2 The polynomial x3 − 2 has the roots 3
√
2, 3

√
2e

i2π
3 and 3

√
2e

i2π
3

2. One of the roots
is real and construction of a splitting field based on this root alone fails since this gives the field
extension:

{x|x = a+ b
3
√
2 + c

3
√
2
2
, a, b, c ∈ Q}

This is a extension field, but not a splitting field since it does not contain the complex roots.
It is often convenient to base the extension field on parameters derived from the roots. With

ω = e
i2π
3 , the two complex roots can be written: z1 = ω 3

√
2 and z2 = ω 3

√
2
2
. Using ω2 = −ω − 1

we have z1+z2 = − 3
√
2 and we do not need z2 for constructing the field extension that is Q( 3

√
2, ω)

gives the splitting field:

{x|x = a+ b
3
√
2 + c

3
√
2
2
+ dω + eω

3
√
2 + fω

3
√
2
2
, a, b, c, d, e, f ∈ Q}

Note that although the polynomial has degree 3, the splitting field has degree 6.
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Example 3 The polynomial (x2 − 2)(x2 − 3) has the roots
√
2,−

√
2,
√
3,−

√
3. The extension

field containing
√
2 and

√
3 also contains −

√
2 and

√
2, but it must also contain

√
6 since all

products of elements must also be contained in order to form a field. the splitting field is:

{x|x = a+ b
√
2 + c

√
3 + d

√
6, a, b, c, d ∈ Q}

Example 4 The polynomial x4 − 2 has the roots 4
√
2, i 4

√
2, − 4

√
2 and −i 4

√
2 and the splitting

field:

{x|x = a+ b
4
√
2 + c

√
2 + d

4
√
2
3
+ ei+ fi

4
√
2 + gi

√
2 + hi

4
√
2
3
, a, b, c, d, e, f, g, h ∈ Q}

Example 5 The polynomial x3 + 4x2 − 4x− 1 has the roots cos(2π
7
), cos(2π2

7
), cos(2π3

7
) and the

splitting field is:
{x|x = a+ bα + cα2, a, b,∈ Q}

where α = cos(2π
7
)

3.2 Mappings

An isomorphic mapping ϕ of V1 to V2 is a mapping with the following rules:

1. If a and b are distinct element of V1 then ϕ(a) and ϕ(b) are distinct elements of V2

2. If a is an element of V2 then there is a unique element b of V1 where ϕ(b) = a

3. The mapping must preserve the structure of V1. This implies that for a field ϕ(a + b) =
ϕ(a) + ϕ(b) and that ϕ(ab) = ϕ(a)ϕ(b).

An automorphism is an isomorphic mapping where V1 = V2.

3.3 Galois extension

A Galois extension M/K, is a field extension based of a splitting field. There are exactly [M : K]
automorphisms mapping the splitting field to itself including the identity mapping, see chapter
”The Galois main theorem”. The set of automorphisms is called a Galois group.
Each automorphism maps every element of K itself. Therefore K is called the fixed field of the
extension. It is clear that the roots are mapped to other roots since:

p(α) = anα
n + an−1α

n−1 + ...+ a0 = 0

p(σ(α)) = anσ(α)
n + an−1σ(α)

n−1 + ...+ a0 = 0

showing that the mapping of the root α is root. A root is never mapped to itself by all automor-
phisms since a splitting field does not contain multiple roots.

3.3.1 Examples

In all examples σ1 is the identity mapping.
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Example 1 x2 − 2:

σ2(
√
2 → −

√
(2)

Example 2 x3 − 2

σ2(
3
√
2) → ω 3

√
2

σ2(ω
3
√
2) → ω2 3

√
2

σ2(ω
2 3
√
2) → 3

√
2

σ3(
3
√
2) → 3

√
2

σ3(ω
3
√
2) → ω2 3

√
2

σ4 = σ1 ◦ σ1

σ5 = σ1 ◦ σ1 ◦ σ1
σ6 = σ1 ◦ σ2

Example 3 (x2 − 2)(x2 − 3)

σ2(
√
2) → −

√
2

σ3(
√
3) →

√
3

σ4(
√
6) → −

√
6

σ3(
√
2) →

√
2

σ3(
√
3) → −

√
3

σ3(
√
6) → −

√
6

σ4 = σ2 ◦ σ3

Note that σ4(
√
6) = σ2(

√
6σ3

√
6) = σ2(

√
2)σ2(

√
3)σ3(

√
2)σ3(

√
3) → (−

√
2)
√
3
√
2)(−

√
3)) =√

6

Example 4 x4 − 2

σ2(
4
√
2) → i 4

√
2

σ2(i
4
√
2) → − 4

√
2

σ2(− 4
√
2) → −i 4

√
2

σ2(−i 4
√
2) → 4

√
2

σ3(
4
√
2) → 4

√
2

σ3(− 4
√
2) → − 4

√
2

σ3(i
4
√
2) → −i 4

√
2

σ4 = σ1 ◦ σ1
σ5 = σ1 ◦ σ1 ◦ σ1
σ6 = σ4 ◦ σ1
σ7 = σ4 ◦ σ3
σ8 = σ4 ◦ σ4
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Example 5 x3 + 4x2 − 4x− 1

Let α = cos(2π
7
) then the roots of the polynomial are given by: r1 = 2α2−1, r2 = α, r3 = 4α3−3α,

σ2(r1) → r2
σ2(r2) → r3
σ2(r3) → r1
σ3(r2) → r3
σ3(r3) → r2

3.4 The Galois main theorem

Given is a finite Galois extension M/K and the corresponding Galois group G = Gal(M/K), with
a sub group H and

MH = {x ∈ M |σ(x) = x,∀σ ∈ H}

Gal(M/L) = ({σ ∈ G|σ(x) = x, ∀x ∈ L}

then there is an intermediate field K ⊂ L ⊂ M where:

H → MH = L and L → Gal(M/L) = H

are inverses and the maps induce a bijection between the normal subgroups of G and the normal,
intermediate extensions of M/K.

L −→ Gal(M/L) −→ MGal(M/L) = L

H −→ MH −→ Gal(M/MH) = H

Since M/K is a Galois extension and thereby a splitting field of p(x), M/L is also a Galois
extension, since p(x) has coefficients in K and thereby also in L. Gal(M/L) is thus a Galois
group and can only fix L (p(x) has no multiple roots). Therefore:

[M : L] = |Gal(M/L)| = H

Since G is a Galois group then since H is a subgroup of G it is also a Galois group. Hence MH is
a Galois extension and can only be fixed by H. Therefore:

|H| = |MH |

This means that there exists a bijection between the sub fields of a Galois extension and the
subgroups of a Galois group.
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Chapter 4

Solving by radicals
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Chapter 5

Appendix A

5.1 Number of automorphisms

The number of automorphisms Gal(M/K)| = |G| is equal to the degree of the splitting field.
A primitive element of the splitting field has a minimal polynomial. The degree of the minimal
polynomial is equal to the degree of the splitting filed. Each automorphism maps the primitive
element to a root in the minimal polynomial. Consequently the number of automorphisms is equal
to the degree of the splitting field. As a consequence:

|H| = [M : MH ] = [M : L]

We have now established the foundation of the Galois theory. It is seen that it makes it possible
to transform a problem from the field extension to a problem of a group and we can use the theory
about groups to solve problems about polynomials and their roots.
One problem is to prove that polynomials of degree higher than 4 cannot be solved by radicals in
general. The problem is formulated based on extension fields and solved by group theory. The
result is that it is not possible in general see chapter ”Solving by radicals”.

5.2 Separable polynomials

Theorem 1 A polynomial is separable if it has no multiple roots. All irreducible polynomials
with rational coefficients are separable. If p = p1p2... then all factors are separable.

Proof 1 If a polynomial p(x) ∈ Q[x] has multiple root in an extension then:

p(x) = (x− α)ph(x)

p′(x) = n(x− α)p−1h(x) + (x− α)ph′(x)+

This shows that p(x) and p′(x) have a common root. If the minimal polynomial of α is m(x) then:

p(x) = g(x)m(x)

p′(x) = r(x)m(x)

11



Since:
1 < deg(p′(x)) < deg(p(x))

then
1 < deg(r(x)) < deg(g(x))

and
2 ≤ deg(g(x))

p(x) is thus not irreducible.

5.3 Abstract fields

Example 2.1 The polynomial 3x2+x+1 is irreducible within the rational numbers consequently:

x− 2

x+ 1
= 3x− 1 mod 3x2 + x+ 1

since
(3x− 1)(x+ 1) = Q(x)(3x2 + x+ 1) + x− 2, Q(x) = 1

5.4 Uniqueness of irreducible polynomials

Theorem 2 Two irreducible polynomials p(x) and g(x) with rational coefficients have no com-
mon root in any field extension of Q unless p(x) = kg(x).
If p(x) and g(x) are relatively prime then we can write:

p(x)u(x) + g(x)v(x) = 1

for some u(x) and v(x) in Q[x]. If there were an α in a field extension of Q which is a common
root of p(x) g(x), then substituting α for x in the above polynomial identity makes the left side
0 while the right side is 1. This is a contradiction, so p(x) g(x) have no common root in any field
extension of Q.

5.5 Minimal polynomial

Example The extension Q(
√
2 +

√
3) has degree of at most 4. The minimal polynomial of√

2 +
√
3 can be found as:

x =
√
2 +

√
3

x2 = 5 + 2
√
6

x2 − 5 = 2
√
6

(x2 − 5)2 = 24

x4 − 10x2 + 1 = 0

The polynomial of degree 4 x4 − 10x2 + 1 is thus the minimal polynomial of
√
2 +

√
3.
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